If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+18x+9=0
a = -3; b = 18; c = +9;
Δ = b2-4ac
Δ = 182-4·(-3)·9
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-12\sqrt{3}}{2*-3}=\frac{-18-12\sqrt{3}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+12\sqrt{3}}{2*-3}=\frac{-18+12\sqrt{3}}{-6} $
| -10x-10x=40 | | -54+2x-47=-21 | | Y=2(-1/3)x+4 | | 5(x+10=20 | | s+21/2s+10=31 | | 4z/10-2=1 | | -54+2x-47=21 | | 2y^2-32y+1=0 | | 10/3-y/2=9y-12/18 | | 3x^2-2x+4=5x^2+6x-8 | | 10+6g=-6 | | 0,1x^2-3x=9,9 | | k=3k÷9 | | 180-8y-64=15 | | 2x-9+2x=-21 | | 2(-5+2x)-4x=-8 | | 9/n=9 | | 3k+9=k | | 9x+12=11x-12 | | t4– -12= 14 | | 4x-22=54+2x | | -8x+8x=10-2x | | 3a-a+3=30-a | | 2x+12=-29 | | 12x+40-8x-7=13+27x-49 | | R^2+5r=6 | | x^+10x+16=0 | | -2.5x^2+2x+5=0 | | 2x-1=x^2-3x-2 | | 3(2x-3)+4x=17 | | 37=18-(x-5) | | 2(x+5)=4(2x+9) |